
Particle-Based Fluid Simulation
CSC417: Physics-Based Animation – Final Project

Eric Koehli
University of Toronto

eric.koehli@mail.utoronto.ca

ABSTRACT
In this project, I use the smoothed-particle hydrodynamics (SPH)
method described by [Müller et al. 2003] to simulate water using
particles.

KEYWORDS
Fluid simulation, Smoothed-particle hydrodynamics, SPH, Particle-
based fluid simulation

ACM Reference Format:
Eric Koehli. 2021. Particle-Based Fluid Simulation: CSC417: Physics-Based
Animation – Final Project. In Proceedings of ACM Conference (Conference’17).
ACM,NewYork, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Fluids in the computer graphics world can represent anything from
wind, water, fire, to snow. We’re all familiar with everyday fluids
such as water, but rarely think about the computational complexity
required to simulate them. Two of the most common approaches
to fluid simulations are the Eulerian grid-based approach and the
particle-based Lagrangian approach, which is the method I take
in my implementation. Each method has their place in graphics
frameworks and each come with their own trade-offs. Some of the
attractive properties of SPH methods include mass-conservation,
Lagrangian discretization, and computational simplicity [Mack-
lin and Müller 2013]. Many real-time applications such as video
games that desire a high degree of fidelity, while also maintaining
performance requirements, choose SPH-based methods for these
reasons.

2 RELATEDWORK
Computational Fluid Dynamics has a long history that started be-
fore the advent of computers: In 1822 Claude Navier and in 1845
George Stokes formulated the famous Navier-Stokes equations
which describe the dynamics of fluids [Müller et al. 2003]. All the
work I describe here as part of my project has been developed by
[Müller et al. 2003] and I refer the reader to their paper for more a
more comprehensive understanding of their work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

3 BACKGROUND
In this section, I will describe the core mathematical formulations
used in a smoothed-particle hydrodynamics approach.

3.1 Smoothed Particle Hydrodynamics
SPH-based methods discretize the fluid using ‘particles’. I would
like to emphasize this point because I found this to be confusing
while I was learning. It might be natural to think of a particle as
representing a fluid molecule, say water. However, a more accurate
analogy would be to think of each particle as representing a small
volume of water:

𝑉𝑖 =
𝑚𝑖

𝜌𝑖

where 𝑚𝑖 is the mass of the particle and is usually defined as a
constant for all particles in the system, and 𝜌𝑖 is the density.

The central concept of an SPH system is that it’s an interpolation
method for the particle system. Particles store attributes such as
density, pressure, mass, velocity, etc. When we want to evaluate an
attribute, we can simply take a weighted average of particle values
within a specific radius of the particle of interest:

𝐴(r𝑖) =
∑
𝑗

𝑚𝑖

𝜌𝑖
𝐴 𝑗𝑊 (r𝑖 − r𝑗 , ℎ) (1)

In this case, 𝐴 is any scalar quantity that is interpolated at location
r𝑖 by a weighted sum of the contribution from all other particles 𝑗 .

The function𝑊 is called the smoothing kernel and has a radius
of influence ℎ. This means that the smoothing kernel has finite
support, which is good news for efficiency: we don’t need to iterate
over all other particles 𝑗 , only those in which 𝑟 = | |r𝑖 − r𝑗 | | < ℎ.

Since the density 𝜌 varies for each particle, this scalar quantity
needs to be computed at each time step. Substituting the density 𝜌

into equation (1) we get

𝜌 (r𝑖) =
∑
𝑗

𝑚𝑖𝑊 (r𝑖 − r𝑗 , ℎ) (2)

One of the features about using SPH is that the derivatives of
these field quantities only affect the smoothing kernel𝑊 . For in-
stance, if we take the gradient of a scalar quantity 𝐴, we get

∇𝐴(r𝑖) =
∑
𝑗

𝑚𝑖

𝜌𝑖
𝐴 𝑗∇𝑊 (r𝑖 − r𝑗 , ℎ)

and similarly if we take the Laplacian ∇2.

3.2 Equations of Motion
When modelling fluids with particles, it’s no surprise that we’re
going to see the famous incompressible Navier-Stokes equation:

𝜌

(
𝜕v
𝜕𝑡

+ v · ∇v
)
= −∇𝑝 + 𝜌g + `∇2v (3)

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Eric Koehli

For brevity, and for the purpose of my implementation, there are
three force density fields on the right hand side of this equation that
we need to determine: the pressure force −∇𝑝 , the external forces
𝜌g, and the viscosity force `∇2v. We will see how to compute each
of these in turn.

3.3 Pressure
After the density has been computed from equation 2, we can
calculate the pressure by using the ideal gas state equation

𝑝 = 𝑘𝜌

where 𝑘 is a gas constant that depends on the temperature. From the
original article, [Müller et al. 2003] actually use a modified version

𝑝 = 𝑘 (𝜌 − 𝜌0) (4)

where 𝜌0 is the rest density. The overall effect of this modification
is to increase the simulation’s numerical stability. Some interesting
observations I observed is when the density 𝜌𝑖 is much larger than
the rest density 𝜌0, this results in a much larger pressure and con-
sequently a larger repulsion forces between the particles, and vice
versa when the density is lower than the rest density.

As noted in Section 3.1, when we apply a gradient to a scalar
field such as pressure 𝑝 and substitute into equation 1, we obtain
the incredible result:

fpressure
𝑖

= −∇𝑝 (r𝑖) = −
∑
𝑗

𝑚 𝑗

𝜌 𝑗
𝑝 𝑗∇𝑊 (r𝑖 − r𝑗 , ℎ) (5)

But this is not entirely accurate because the equation above violates
Newton’s 3rd law that every action (force) has an equal and opposite
reaction. This is due to the fact that the above equation is not
symmetric between particles 𝑖 and 𝑗 . However, there is a simple
and elegant fix to this problem by taking the mean of the pressure
values and making the substitution

𝑝 𝑗 =
𝑝𝑖 + 𝑝 𝑗

2
which gives us the symmetric force due to pressure. One way to
think of the pressure force is that it aims to restore the rest state
of the fluid where 𝜌𝑖 = 𝜌0. Lastly, the pressure force acts along the
vector between the particles, which can be seen when you take the
gradient of the smoothing kernel.

3.4 Viscosity
Once again, when we apply equation 1 to the viscosity term `∇2v
and take the Laplacian, we end up with asymmetric forces, which
again, is elegantly symmetrized by taking the velocity differences:

fviscosity
𝑖

= `∇2v(r𝑖) =
∑
𝑗

𝑚 𝑗

𝜌 𝑗
(v𝑗 − v𝑖)∇2𝑊 (r𝑖 − r𝑗 , ℎ) (6)

Some great intuition of the viscosity force was stated by the authors:
“... if you look at the neighbors of particle 𝑖 from 𝑖’s own moving
frame of reference, then particle 𝑖 is accelerated in the direction of
the relative speed of its environment.”

3.5 Smoothing Kernels
I don’t have much room left, so please refer to the original paper
by [Müller et al. 2003] for details of the smoothing kernels I used
in my implementation.

4 IMPLEMENTATION
My implementation follows the same structural layout as the details
given in the paper [Müller et al. 2003] as well as that presented
here. The core of my simulation loop is as follows:

Algorithm 1: Simulation Loop
1 // Compute the density and pressure for each particle

2 foreach particle 𝑖 do
3 Find all neighboring particles N𝑖 (r𝑖)
4 Use equation 2 to compute density 𝜌𝑖

5 Use equation 4 to compute pressure 𝑝𝑖
6 // Compute the forces for each particle

7 foreach particle 𝑖 do
8 Use equation 5 to compute fpressure

𝑖

9 Use equation 6 to compute fviscosity
𝑖

10 Sum all the forces on each particle:
f𝑖 = fpressure

𝑖
+ fviscosity

𝑖
+ gravity

11 // Sympletic Euler Integration + handle wall collisions

12 foreach particle 𝑖 do
13 u𝑡+1

𝑖
= u𝑡

𝑖
+ Δ𝑡 ∗ f𝑖

𝜌𝑖
// update velocity

14 r𝑡+1
𝑖

= r𝑡
𝑖
+ Δ𝑡 ∗ u𝑡+1

𝑖
// update position

15

16 if new position is outside container then
17 Reflect the velocity component that’s perpendicular

to the object’s surface and push the object inside.

5 RESULTS
As you can see from the algorithm above, it’s a fairly straight-
forward application of the theory built up by [Müller et al. 2003].
There are a couple key points of the algorithm worth discussing:
The core of the algorithm is somewhat set in stone, in the sense
that you can’t compute forces before computing the densities and
pressures and you can’t try to shortcut the computation by comput-
ing the forces within the same loop as density (I tried!). However,
you are entirely free to come up with your own data structure
for finding neighboring particles on line 3 of the algorithm. In the
original paper, [Müller et al. 2003] discuss a common method to
reduce the computation complexity by using a grid divided into
squares (or cubes in 3D) of size ℎ (which is the kernel’s radius of
support). This cuts the computational cost significantly because
you now only need to check particles in it’s own grid square plus
the surrounding 7 neighboring grid squares. This is the approach
I took in my implementation, however, I did not really see much
improvement over a more naive approach. I believe the reason for
this is because I could not simulate enough particles on my PC for
the grid data structure to actually be worth maintaining. Another
benefit to using a Grid-based data structure to maintain the par-
ticles is that it naturally allows for parallelism [Braley and Sandu
2009].

On my computer, I was able to simulate ∼ 100 particles using
both a naive approach to finding neighboring particles and using

Particle-Based Fluid Simulation Conference’17, July 2017, Washington, DC, USA

a grid data structure. Interesting, I was able to simulate around ∼
400 particles using MATLAB’s rangesearch function.

6 CHALLENGES
This is not part of my submission since it’s over two pages, but
there are some additional things I would like to mention. There
were too many challenges in this project to mention them all, but
some of which I feel the need to elaborate.

6.1 Why I chose Python
Finding some way to render my simulation was a difficult task for
me because I wanted to focus on the core aspects of the problem
and not worry so much about learning all the details of OpenGL
or something similar, and Python seemed to be the language that
could offered me this level simplicity. My original plan was to use
Python only to develop a quick ‘Proof of Concept’ to see that my
implementation could work and was working before porting it over
to C++. Little did I realize how much time I would spend just trying
to get this ‘proof of concept’ to work that I never got the chance to
re-implement this code in C++. However, after the course is finished
this is a small project I would like to complete.

6.2 Finding tuning parameters
Finding some set of parameters for the simulation such that it
would actually look like a fluid was a challenging task. Part of this

problem is because it’s so dependent on the size of the window
frame, computer processing speed, time step, and muchmore. There
were some great resources I found to help with this process beyond
trial-and-error testing:
Stanford Graphics Project
SPH Survival Kit

7 REFERENCES
I would like to add a couple additional references that really helped
me with this project and that were not added to the other “Refer-
ences” section because I didn’t specifically cite them in this technical
brief:
[Bridson 2008] Chapter 15 on SPH
Cornell Spatial Binning Grid Data Structure - Bindel
CMU Animation Lecture Slides on SPH - Scoros

REFERENCES
C. Braley and A. Sandu. 2009. Fluid Simulation For Computer Graphics: A Tutorial in

Grid Based and Particle Based Methods.
Robert Bridson. 2008. Fluid Simulation. A. K. Peters, Ltd., USA.
Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph.

32, 4, Article 104 (July 2013), 12 pages. https://doi.org/10.1145/2461912.2461984
Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-Based Fluid

Simulation for Interactive Applications. In Symposium on Computer Animation,
D. Breen and M. Lin (Eds.). The Eurographics Association. https://doi.org/10.2312/
SCA03/154-159

http://graphics.stanford.edu/courses/cs348c-17-fall/PA1_PBF2016/index.html
http://www8.cs.umu.se/kurser/TDBD24/VT06/lectures/sphsurvivalkit.pdf
http://www.cs.cornell.edu/~bindel/class/cs5220-s14/spatial.pdf
https://www.cs.cmu.edu/~scoros/cs15467-s16/lectures/11-fluids2.pdf
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.2312/SCA03/154-159
https://doi.org/10.2312/SCA03/154-159

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Smoothed Particle Hydrodynamics
	3.2 Equations of Motion
	3.3 Pressure
	3.4 Viscosity
	3.5 Smoothing Kernels

	4 Implementation
	5 Results
	6 Challenges
	6.1 Why I chose Python
	6.2 Finding tuning parameters

	7 References
	References

